A data-driven approach for microgrid distributed generation planning under uncertainties

نویسندگان

چکیده

The increasing demand for power system decarbonization and resilience raises the necessity of incorporating renewable distributed generation (DG) into microgrid planning. complexity DG planning largely roots from intermittent wind solar energy load variations throughout period. This paper proposes a novel two-stage data-driven adaptive robust (DDARDGP) framework considering both grid-connected islanded modes microgrids, wherein overall cost is minimized. By leveraging spatio-temporal property historical weather grid information, compact uncertainty set developed based on Bayesian nonparametric approach. problem further solved by modified column constraint (CC&G) algorithm. In study, effectiveness proposed demonstrated using IEEE 33-bus test system. case study considers optimal sizing, allocation mixtures. simulation results confirm that adapts well to increase data dimensions solves over-conservatism issue, leading 34.14% reduction in estimation compared with traditional budget set. Accordingly, total can achieve $23,185 under DDARDGP framework.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Distributed Generation Investment by a Microgrid under Uncertainty

This paper examines a California-based microgrid’s decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG...

متن کامل

Generation planning for electric power utilities under market uncertainties: a real options approach

The generation business in the U.S. is currently undergoing a transition from a regulated monopoly toward an uncertain, competitive market. Under the competitive market, the price of electric power as well as the corresponding revenue may be much less certain than before. These market uncertainties have increased the significance of two critical factors in generation planning. These factors are...

متن کامل

Resilience-Based Framework for Distributed Generation Planning in Distribution Networks

Events with low probability and high impact, which annually cause high damages, seriously threaten the health of the distribution networks. Hence, more attention to the issue of enhancing network resilience and continuity of power supply, feels more than ever, all over the world. In modern distribution networks, because of the increasing presence of distributed generation resources, an alternat...

متن کامل

A Probabilistic Approach to Transmission Expansion Planning in Deregulated Power Systems under Uncertainties

Restructuring of power system has faced this industry with numerous uncertainties. As a result, transmission expansion planning (TEP) like many other problems has become a very challenging problem in such systems. Due to these changes, various approaches have been proposed for TEP in the new environment. In this paper a new algorithm for TEP is presented. The method is based on probabilisti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Energy

سال: 2022

ISSN: ['0306-2619', '1872-9118']

DOI: https://doi.org/10.1016/j.apenergy.2021.118429